AFM observation of single, functioning ionotropic glutamate receptors reconstituted in lipid bilayers.
نویسندگان
چکیده
BACKGROUND Ionotropic glutamate receptors (iGluRs) are responsible for extracellular signaling in the central nervous system. However, the relationship between the overall structure of the protein and its function has yet to be resolved. Atomic force microscopy (AFM) is an important technique that allows nano-scale imaging in liquid. In the present work we have succeeded in imaging by AFM of the external features of the most common iGluR, AMPA-R (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor), in a physiological environment. METHODS Homomeric GluR3 receptors were over-expressed in insect cells, purified and reconstituted into lipid membranes. AFM images were obtained in a buffer from membranes immobilized on a mica substrate. RESULTS Using Au nanoparticle-conjugated antibodies, we show that proteins reconstitute predominantly with the N-terminal domain uppermost on the membrane. A tetrameric receptor structure is clearly observed, but it displays considerable heterogeneity, and the dimensions differ considerably from cryo-electron microscopy measurements. CONCLUSIONS Our results indicate that the extracellular domains of AMPA-R are highly flexible in a physiological environment. GENERAL SIGNIFICANCE AFM allows us to observe the protein surface structure, suggesting the possibility of visualizing real time conformational changes of a functioning protein. This knowledge may be useful for neuroscience as well as in pharmaceutical applications.
منابع مشابه
Ionotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملTARP Phosphorylation Regulates Synaptic AMPA Receptors through Lipid Bilayers
Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like membrane-associated guan...
متن کاملP24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP
Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...
متن کاملPostnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat
Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1800 7 شماره
صفحات -
تاریخ انتشار 2010